Path of DNA within the Mu Transpososome Transposase Interactions Bridging Two Mu Ends and the Enhancer Trap Five DNA Supercoils
نویسندگان
چکیده
The phage Mu transpososome is assembled by interactions of transposase subunits with the left (L) and right (R) ends of Mu and an enhancer (E) located in between. A metastable three-site complex LER progresses into a more stable type 0 complex in which a tetrameric transposase is poised for DNA cleavage. "Difference topology" has revealed five trapped negative supercoils within type 0, three contributed by crossings of E with L and R, and two by crossings of L with R. This is the most complex DNA arrangement seen to date within a recombination synapse. Contrary to the prevailing notion, the enhancer appears not to be released immediately following type 0 assembly. Difference topology provides a simple method for determining the ordered sequestration of DNA segments within nucleoprotein assemblies.
منابع مشابه
3D reconstruction of the Mu transposase and the Type 1 transpososome: a structural framework for Mu DNA transposition.
Mu DNA transposition proceeds through a series of higher-order nucleoprotein complexes called transpososomes. The structural core of the transpososome is a tetramer of the transposase, Mu A, bound to the two transposon ends. High-resolution structural analysis of the intact transposase and the transpososome has not been successful to date. Here we report the structure of Mu A at 16-angstroms an...
متن کاملAssembly of phage Mu transpososomes: Cooperative transitions assisted by protein and DNA scaffolds
Transposition of phage Mu takes place within higher order protein-DNA complexes called transpososomes. These complexes contain the two Mu genome ends synapsed by a tetramer of Mu transposase (MuA). Transpososome assembly is tightly controlled by multiple protein and DNA sequence cofactors. We find that assembly can occur through two distinct pathways. One previously described pathway depends on...
متن کاملThree-Site Synapsis during Mu DNA Transposition: A Critical Intermediate Preceding Engagement of the Active Site
The chemical steps of bacteriophage Mu DNA transposition take place within a higher order nucleoprotein structure. We describe a novel intermediate that precedes the previously characterized transpososomes and directly demonstrates the interaction of a distant enhancer element with recombination regions. The transpositional enhancer interacts with the Mu left and right ends to form a three-site...
متن کاملCriss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition.
A bipartite enhancer sequence (composed of the O1 and O2 operator sites) is essential for assembly of the functional tetramer of phage Mu transposase (MuA) on supercoiled DNA substrates. A three-site interaction (LER) between the left (L) and right (R) ends of Mu (att sites) and the enhancer (E) precedes tetramer assembly. We have dissected the role of the enhancer in tetramer assembly by using...
متن کاملDNA repair by the cryptic endonuclease activity of Mu transposase.
Phage Mu transposes by two distinct pathways depending on the specific stage of its life cycle. A common strand transfer intermediate is resolved differentially in the two pathways. During lytic growth, the intermediate is resolved by replication of Mu initiated within the flanking target DNA; during integration of infecting Mu, it is resolved without replication, by removal and repair of DNA f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 109 شماره
صفحات -
تاریخ انتشار 2002